Auszüge

	Festigkeitsklassen von Schrauben								
	4.6	5.6	5.8	6.8	8.8	10.9	12.9		
Nennzugfestigkeit R _{m, Nenn} N/mm ²	400	500	500	600	800	1000	1200		
untere Streckgrenze R _{eL} N/mm ²	240	300	400	480	-	-	-		
0,2 %-Dehngrenze R _{p 0,2} N/mm ²	_	_	_	-	640	900	1080		
Spannung unter Prüfkraft S _p N/mm ²	225	280	380	440	580	830	970		
Bruchdehnung A %	22	20	_	-	12	9	8		

Das Kennzeichen der Festigkeitsklasse besteht aus zwei Zahlen:

- die erste Zahl entspricht ¹/₁₀₀ der Nennzugfestigkeit in N/mm² (siehe Tabelle)
- die zweite Zahl gibt das 10fache des Verhältnisses der unteren Streckgrenze R_{eL} (oder 0,2 %-Dehngrenze $R_{p\ 0,2}$) zur Nennzugfestigkeit $R_{m,\ Nenn}$ an (Streckgrenzenverhältnis).

Beispiel: Festigkeitsklasse 5.8 bedeutet Mindestzugfestigkeit $R_m = 500 \text{ N/mm}^2$ Mindeststreckgrenze $R_{eL} = 400 \text{ N/mm}^2$

Zudem ergibt die Multiplikation der beiden Zahlen ¹/₁₀ der Steckgrenze in N/mm².

Prüfspannung S _p N/mm² für Gewinde	Festigkeitsklassen von Muttern						
	5	6	8	10	12		
bis M 4 über M 4 bis M 7 über M 7 bis M 10	520 580 590	600 670 680	800 855 870	1040 1040 1040	1150 1150 1160		
über M 10 bis M 16 über M 16 bis M 39	610 630	700 720	880 920	1050 1060	1190 1200		

Die Bezeichnung einer Festigkeitsklasse besteht aus einer Kennzahl die Auskunft über die Prüfspannung des verwendeten Werkstoffes gibt:

Kennzahl × 100 = Prüfspannung S_p

Die Prüfspannung ist gleich der Mindestzugfestigkeit in N/mm² einer Schraube, die bei Paarung mit der entsprechenden Mutter bis zu der Mindeststreckgrenze der Schraube belastet werden kann.

Beispiel: Schraube 8.8 – Mutter 8, Verbindung bis zu der Mindeststreckgrenze der Schraube belastbar.